Commit a78f4f94 authored by Cristian Aguirre's avatar Cristian Aguirre

Add starroks.py

parent 9c72a0a6
from typing import Dict, Any
from typing import Dict, Any, List
import logging
from pyspark.sql import SparkSession
......@@ -18,14 +18,23 @@ class BucketAwsInput:
self.schema = params["schema"]
self.data = None
def get_data(self) -> None:
def get_data(self, replace: bool, replace_space_str: str) -> None:
try:
def replace_delimiters(line):
line = line.replace(replace_space_str, " ")
return line
file_type = FileTypeEnum(self.input_type)
if not self.input_path.startswith("s3://") and not self.input_path.startswith("s3a://"):
raise Exception(f"Error getting descriptor from S3. Path should start with s3://")
final_path = self.input_path
if file_type == FileTypeEnum.CSV or file_type == FileTypeEnum.TXT:
self.data = self.session.read.csv(final_path, header=True, sep=self.separator, inferSchema=True)
if replace:
lines_rdd = self.session.sparkContext.textFile(final_path)
cleaned = lines_rdd.map(replace_delimiters)
self.data = self.session.read.csv(cleaned, header=True, sep=self.separator)
else:
self.data = self.session.read.csv(final_path, header=True, sep=self.separator)
elif file_type == FileTypeEnum.PARQUET:
self.data = self.session.read.parquet(final_path, header=True)
else:
......
......@@ -17,7 +17,7 @@ class Input:
self.data = None
def get_data(self) -> None:
self.factory.get_data()
def get_data(self, replace: bool = False, replace_space_str: str = "\t") -> None:
self.factory.get_data(replace, replace_space_str)
self.data = self.factory.data
This diff is collapsed.
from typing import Dict, Any
import logging
from pyspark.sql.functions import col, when, lit
from pyspark.sql.functions import col, when, lit, to_date, date_format, date_add
from pyspark.sql.types import StructType, StructField, StringType
from prefect import task
from Enum.DataTypeEnum import DataTypeEnum
......@@ -19,8 +20,8 @@ class ETLProcess:
self.inputs = {}
def init(self, spark_jars: Dict[str, str], mongodb_uri: str = "", starrok_uri: str = "") -> None:
self.session = createSession(self.identifier, spark_jars, mongodb_uri, starrok_uri)
def init(self, spark_jars: Dict[str, str]) -> None:
self.session = createSession(self.identifier, spark_jars)
@task
def reader(self) -> None:
......@@ -33,6 +34,10 @@ class ETLProcess:
params = {"identifier": identifier, "path": input_obj["path"], "type": input_obj["input_type"],
"separator": input_obj["separator"], "schema": input_obj["schema"]}
current_input = Input(input_type, self.session, params, provider)
# Caso especial de reemplazar "\t" con " "
if identifier == "FACTURACION":
current_input.get_data(True)
else:
current_input.get_data()
self.inputs.update({identifier: current_input.data})
except Exception as e:
......@@ -98,17 +103,40 @@ class ETLProcess:
return success
@task
def write(self, identifier: str, prev_status: bool = True) -> None:
def process_facturacion(self, identifier: str) -> bool:
success = False
try:
df = self.inputs[identifier]
df = df.withColumn("fecha_vencimiento_fact", to_date(df["FECHA_VENCIMIENTO"], "dd/MM/yy"))
df = df.withColumn("fecha_periodo_fact",
to_date(date_format(col("PERIODO_PROCESO_CODIGO"), "yyyyMM") + "01", "yyyyMMdd"))
df = df.withColumn("FACTURA_VENCIDA",
when(date_add(col("fecha_periodo_fact"), 5) < col("fecha_vencimiento_fact"), lit("SI"))
.otherwise(lit("NO")))
self.inputs[identifier] = df
success = True
except Exception as e:
logger.error(f"Error transformando archivo de facturacion. {e}")
finally:
return success
@task
def write(self, identifier: str, starroks_jdbc: str, starroks_fe: str, prev_status: bool = True) -> None:
try:
# self.inputs[identifier].write.format("starrocks"). \
# option("dbtable", identifier).mode("overwrite").save()
database = starroks_jdbc[starroks_jdbc.rfind("/")+1:]
starroks_user = self.conf["starroks"]["user"]
starroks_pass = self.conf["starroks"]["password"]
self.inputs[identifier].write.format("starrocks") \
.option("starrocks.fe.http.url", "ec2-34-231-243-52.compute-1.amazonaws.com:8030") \
.option("starrocks.fe.jdbc.url", "jdbc:mysql://ec2-34-231-243-52.compute-1.amazonaws.com:9030/bcom_spark") \
.option("starrocks.table.identifier", "bcom_spark."+identifier) \
.option("starrocks.user", "root") \
.option("starrocks.password", "") \
.option("starrocks.fe.http.url", starroks_fe) \
.option("starrocks.fe.jdbc.url", starroks_jdbc) \
.option("starrocks.table.identifier", database+"."+identifier) \
.option("starrocks.user", starroks_user) \
.option("starrocks.password", starroks_pass) \
.mode("append") \
.save()
except Exception as e:
logger.error(f"Erro guardando resultados. {e}")
logger.error(f"Error guardando resultados. {e}")
from typing import Dict
from pyspark.sql import SparkSession, DataFrame
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, udf
from pyspark.sql.types import ArrayType, StringType
import logging
logger = logging.getLogger()
def createSession(name: str, spark_jars: Dict[str, str], mongodb_uri: str, starrok_uri: str) -> SparkSession:
def createSession(name: str, spark_jars: Dict[str, str]) -> SparkSession:
session = None
try:
jars = list(spark_jars.values())
jars = ",".join(jars)
session = SparkSession.builder \
.appName(name) \
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") \
.config("spark.hadoop.fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.DefaultAWSCredentialsProviderChain") \
.config("spark.jars", jars) \
.config("spark.jars.packages", "graphframes:graphframes:0.8.3-spark3.4-s_2.12") \
.config("spark.executor.extraClassPath", jars) \
.config("spark.driver.extraClassPath", jars) \
.config("spark.mongodb.input.uri", mongodb_uri) \
.config("spark.mongodb.output.uri", mongodb_uri) \
.config("spark.starrocks.driver", "com.starroks.jdbc.Driver") \
.config("spark.sql.catalogImplementation", "in-memory") \
.getOrCreate()
# .config("spark.starrocks.url", starrok_uri) \
# .config("spark.starrocks.driver", "com.starroks.jdbc.Driver") \
# .config("spark.sql.catalogImplementation", "in-memory") \
# .getOrCreate()
session._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
session._jsc.hadoopConfiguration().set("fs.s3a.endpoint", "http://192.168.21.47:9000")
session._jsc.hadoopConfiguration().set("fs.s3a.connection.ssl.enabled", "false")
session._jsc.hadoopConfiguration().set("fs.s3a.path.style.access", "true")
session._jsc.hadoopConfiguration().set("fs.s3a.access.key", "minioadmin")
session._jsc.hadoopConfiguration().set("fs.s3a.secret.key", "minioadmin")
except Exception as e:
logger.error(f"Error creando sesion. {e}")
finally:
return session
def get_goal_by_kpi(df: DataFrame, agent: str, period: str, kpi: str) -> float:
result = 0.0
try:
df = df.filter((df["CEDULA"] == agent) & (df["PERIODO_PROCESO_CODIGO"] == period) & (df["KPI"] == kpi)). \
select("META_FINAL")
if df.count() != 0:
results = [row[0] for row in df.select("META_FINAL").collect()]
result = results[0]
except Exception as e:
logger.error(f"Error obteniendo meta por kpi. {e}")
finally:
return result
def find_related_vertices(graph):
# Obtener vértices y aristas del grafo
vertices = graph.vertices
edges = graph.edges
# Diccionario para almacenar los vértices relacionados para cada vértice
related_vertices_dict = {}
def get_execute_by_service(df: DataFrame, agent: str, period: str, segment: str) -> int:
result = 0
try:
df = df.filter((df["AGENTE_COMISIONA"] == agent) & (df["PERIODO_PROCESO_CODIGO"] == period) &
(df["SEGMENTO"] == segment))
result = df.count()
except Exception as e:
logger.error(f"Error obteniendo meta por segmento. {e}")
finally:
return result
# Función de búsqueda en profundidad (DFS)
def dfs(vertex_id, related_vertices):
# Agregar el vértice actual a la lista de relacionados
related_vertices.add(vertex_id)
# Encontrar vértices relacionados directamente al vértice actual
direct_related = edges.filter(edges.src == vertex_id).select("dst").collect()
# Explorar cada vértice relacionado directamente
for row in direct_related:
related_vertex_id = row["dst"]
# Si el vértice relacionado no ha sido visitado, realizar DFS en él
if related_vertex_id not in related_vertices:
dfs(related_vertex_id, related_vertices)
# Obtener los valores únicos de los vértices
unique_vertices = vertices.select("id").distinct().collect()
# Iterar sobre los vértices únicos
for i, row in enumerate(unique_vertices):
vertex_id = row["id"]
# Inicializar un conjunto para almacenar vértices relacionados
related_vertices = set()
# Realizar DFS para encontrar todas las relaciones del vértice actual
dfs(vertex_id, related_vertices)
# Agregar los vértices relacionados al diccionario
related_vertices_dict[vertex_id] = list(related_vertices)
related_vertices_dict[vertex_id].remove(vertex_id)
return related_vertices_dict
......@@ -7,13 +7,12 @@ from prefect import flow, get_run_logger
from Pipeline.CommissionProcess import CommissionProcess
SPARK_JARS = {
"MONGO_CORE": "/opt/spark-jars/mongodb-driver-core-4.0.4.jar",
"MONGO_CLIENT": "/opt/spark-jars/mongodb-driver-sync-4.0.4.jar",
"MONGODB": "/opt/spark-jars/mongo-spark-connector_2.12-3.0.1.jar",
"BSON": "/opt/spark-jars/bson-4.0.4.jar"
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
}
MONGODB_URI = "mongodb://bcom_spark_user:root@192.168.1.37:50001/bcom_spark"
STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
@flow()
......@@ -25,20 +24,20 @@ def run_commission(config: Dict[str, Any]) -> None:
# Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time()
commission_process.init(SPARK_JARS, MONGODB_URI)
commission_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - Extraer la data - RECORDAR: SPARK ES LAZY!!!
start_reader = time.time()
commission_process.get_inputs(commission_process)
commission_process.get_inputs(commission_process, STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de extracción de datos desde la BD: {time.time() - start_reader}")
# Tercer task - Obtener metas
start_process = time.time()
goals = commission_process.get_goals_second_way(commission_process, "VENTAS", "GOALS")
goals = commission_process.get_goals(commission_process, "VENTAS", "GOALS")
# Quinto task - Obtener ejecutados - ¿Aplicar tmb filtro de FLAG_COMISIONABLE y ACTIVE_USER_TRAFFIC?
executes = commission_process.get_executed_second_way(commission_process, "VENTAS", "TEAMS")
executes = commission_process.get_executed(commission_process, "VENTAS", "TEAMS")
# Sexo task - Obtener monto origen
base = commission_process.get_source_value(commission_process, "VENTAS", "COMERCIAL_BASE")
......@@ -48,10 +47,10 @@ def run_commission(config: Dict[str, Any]) -> None:
# Task de escritura
start_load = time.time()
_ = commission_process.write_result(commission_process, result, "REPORT_SUMMARY")
_ = commission_process.write_result(commission_process, result, "REPORT_SUMMARY", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga del reporte a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso de etl: {time.time() - start_time}")
logger.info(f"Duración de ejecución del proceso de comision: {time.time() - start_time}")
if __name__ == "__main__":
......
import time
import json
from typing import Any, Dict
from prefect import flow, get_run_logger
from Pipeline.CommissionProcess import CommissionProcess
SPARK_JARS = {
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
}
STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
@flow()
def run_commission(config: Dict[str, Any]) -> None:
logger = get_run_logger()
start_time = time.time()
commission_process = CommissionProcess(config)
# Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time()
commission_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - Extraer la data - RECORDAR: SPARK ES LAZY!!!
start_reader = time.time()
commission_process.get_inputs(commission_process, STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de extracción de datos desde la BD: {time.time() - start_reader}")
# Tercer task - Obtener metas
start_process = time.time()
goals = commission_process.get_goals_2(commission_process, "GOALS", "ESTRUCTURA_ORGANIZACIONAL")
# Quinto task - Obtener ejecutados - ¿Aplicar tmb filtro de FLAG_COMISIONABLE y ACTIVE_USER_TRAFFIC?
executes = commission_process.get_executed_2(commission_process, "ESTRUCTURA_ORGANIZACIONAL", "TEAMS", "VENTAS")
#
# Sexo task - Obtener monto origen
base = commission_process.get_source_value_2(commission_process, "ESTRUCTURA_ORGANIZACIONAL", "COMERCIAL_BASE")
# Segundo task - Crear jerarquía
start_process = time.time()
# ["AGENTES", "ESTRUCTURA", "UO", "OGRANIZACIONES"]
identifiers = ["INDIVIDUOS", "ESTRUCTURA_ORGANIZACIONAL", "UNIDAD", "ORGANIZACION"]
jerarquia_graph = commission_process.create_jerarquia(commission_process, identifiers, goals, executes, base)
logger.info(f"Duración de creación de dataframes con grafos (jerarquía): {time.time() - start_process}")
result = commission_process.update_executes(commission_process, jerarquia_graph, goals, executes, base)
result = commission_process.get_commission_per_agent_2(commission_process, result)
logger.info(f"Duración de procesamiento en memoria: {time.time() - start_process}")
# Task de escritura
start_load = time.time()
_ = commission_process.write_result(commission_process, result, "REPORT_SUMMARY", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga del reporte a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso de comision: {time.time() - start_time}")
if __name__ == "__main__":
conf_path = "config.json"
with open(conf_path) as f:
conf = json.load(f)
# Run Commission
run_commission(conf)
......@@ -9,7 +9,7 @@
"data": [
{
"identifier": "VENTAS",
"path": "s3a://prueba-id/bcom-tests/inputs/gross_202311.txt",
"path": "s3a://prueba-id/inputs_spark/gross_202311.txt",
"input_type": "txt",
"separator": "|",
"schema": {
......@@ -30,7 +30,7 @@
},
{
"identifier": "TEAMS",
"path": "s3a://prueba-id/bcom-tests/inputs/equipos_202311.txt",
"path": "s3a://prueba-id/inputs_spark/equipos_202311.txt",
"input_type": "txt",
"separator": "|",
"schema": {
......@@ -45,7 +45,7 @@
},
{
"identifier": "GOALS",
"path": "s3a://prueba-id/bcom-tests/inputs/metas_202311.csv",
"path": "s3a://prueba-id/inputs_spark/metas_202311.csv",
"input_type": "csv",
"separator": ";",
"schema": {
......@@ -58,7 +58,7 @@
},
{
"identifier": "COMERCIAL_BASE",
"path": "s3a://prueba-id/bcom-tests/inputs/planta_comercial_202311.csv",
"path": "s3a://prueba-id/inputs_spark/planta_comercial_202311.csv",
"input_type": "csv",
"separator": ";",
"schema": {
......@@ -67,14 +67,92 @@
"ESTADO": "TEXT",
"VARIABLE_COMISION": "DECIMAL"
}
},
{
"identifier": "INDIVIDUOS",
"path": "s3a://prueba-id/inputs_spark/individuos_2023111813.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIIN_NAMES": "TEXT",
"PIIN_LASTN": "TEXT",
"PIIN_IDENT": "TEXT",
"PIIN_TDOCU": "TEXT",
"PIIN_SLIQU": "TEXT",
"PIIN_CURRE": "TEXT",
"PIIN_BASAL": "DECIMAL",
"PIIN_CPERS": "TEXT",
"PIIN_CPHON": "TEXT",
"PIIN_CEMAI": "TEXT",
"UBIG_IDENT": "TEXT"
}
]
},
"output": {
"type": "bucket",
"params": {
"provider": "aws",
"bucket": "prueba-id"
{
"identifier": "ROLES",
"path": "s3a://prueba-id/inputs_spark/roles_2023111812.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIRO_IDENT": "TEXT",
"PIRO_NAME": "TEXT"
}
},
{
"identifier": "ORGANIZACION",
"path": "s3a://prueba-id/inputs_spark/organizaciones_2023111813.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIOR_ORGID": "TEXT",
"PIOR_NAME": "TEXT",
"PIOR_IDENT": "TEXT",
"PIOR_SLIQU": "TEXT",
"PIOR_TCHAN": "TEXT",
"PIOR_CCHAN": "TEXT",
"PIOR_CPERS": "TEXT",
"PIOR_CPHON": "TEXT",
"PIOR_CEMAI": "TEXT",
"PIOR_RESPO": "TEXT",
"PIOR_REPRE": "TEXT",
"UBIG_IDENT": "TEXT",
"PIOR_LIQIN": "TEXT"
}
},
{
"identifier": "UNIDAD",
"path": "s3a://prueba-id/inputs_spark/unidades_organizacionales_2023111812.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIOU_ORGID": "TEXT",
"PIOU_NAME": "TEXT",
"PIOU_UOTYP": "TEXT",
"PIOU_BEORG": "TEXT",
"PIOU_CPERS": "TEXT",
"PIOU_CPHON": "TEXT",
"PIOU_CEMAI": "TEXT",
"PIOU_RESPO": "TEXT",
"PIOU_SEGME": "TEXT",
"UBIG_IDENT": "TEXT"
}
},
{
"identifier": "ESTRUCTURA_ORGANIZACIONAL",
"path": "s3a://prueba-id/inputs_spark/estructura_organizacional_2023111812.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIOS_ORGID": "TEXT",
"PIOS_INDID": "TEXT",
"PIOS_ROLID": "TEXT",
"PIOS_SUPER": "TEXT"
}
}
]
},
"starroks": {
"user": "root",
"password": ""
}
}
\ No newline at end of file
{
"identifier": "BCOM-SPARK-TESTS2",
"inputs": {
"type": "bucket",
"params": {
"provider": "aws"
},
"data": [
{
"identifier": "FACTURACION",
"path": "s3a://prueba-id/bcom-tests/inputs/Facturacion_20240320.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PERIODO_PROCESO_CODIGO": "TEXT",
"NOMBRE_CLIENTE": "TEXT",
"NUM_FACTURA": "TEXT",
"DOCUMENTO": "TEXT",
"CIUDAD": "TEXT",
"FECHA_VENCIMIENTO": "TEXT",
"SUBS_ID": "TEXT",
"ESTADO_FACTURA": "TEXT"
}
},
{
"identifier": "ENDING",
"path": "s3a://prueba-id/bcom-tests/inputs/Ending_20240320.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PERIODO_PROCESO_CODIGO": "TEXT",
"SUBSCRIBER_ID": "TEXT",
"SERVICIO": "TEXT",
"ESTADO": "TEXT",
"MOVIMIENTO_NOMBRE": "TEXT",
"OPERADOR_PORTA_DESTINO": "TEXT",
"REVENUE": "DECIMAL"
}
}
]
},
"starroks": {
"user": "root",
"password": ""
}
}
\ No newline at end of file
......@@ -11,17 +11,12 @@ SPARK_JARS = {
"BUNDLE": "/opt/spark-jars/aws-java-sdk-bundle-1.12.431.jar",
"COMMON": "/opt/spark-jars/hadoop-common-3.3.4.jar",
"AWS_CLIENT": "/opt/spark-jars/hadoop-client-3.3.4.jar",
"MONGO_CORE": "/opt/spark-jars/mongodb-driver-core-4.0.4.jar",
"MONGO_CLIENT": "/opt/spark-jars/mongodb-driver-sync-4.0.4.jar",
"MONGODB": "/opt/spark-jars/mongo-spark-connector_2.12-3.0.1.jar",
"BSON": "/opt/spark-jars/bson-4.0.4.jar",
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.4_2.12-1.1.2.jar",
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
}
MONGODB_URI = "mongodb://bcom_spark_user:root@192.168.1.37:50001/bcom_spark"
STARROK_URI = "jdbc:starroks://root:@ec2-3-237-32-62.compute-1.amazonaws.com:9030/bcom_spark"
STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
@flow
......@@ -34,7 +29,7 @@ def run_etl(config: Dict[str, Any]) -> None:
# Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time()
etl_process.init(SPARK_JARS, starrok_uri=STARROK_URI)
etl_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - (Reader) - Extraer los ficheros
......@@ -55,13 +50,23 @@ def run_etl(config: Dict[str, Any]) -> None:
# Write - Insumo GROSS
start_load = time.time()
etl_process.write.submit(etl_process, "VENTAS", ventas_flag)
etl_process.write.submit(etl_process, "VENTAS", STARROK_JDBC, STARROK_FE_NODE, ventas_flag)
# Write - Insumo TEAMS
etl_process.write.submit(etl_process, "TEAMS", teams_flag)
etl_process.write.submit(etl_process, "TEAMS", STARROK_JDBC, STARROK_FE_NODE, teams_flag)
# Write - Insumo GOALS
etl_process.write.submit(etl_process, "GOALS")
etl_process.write.submit(etl_process, "GOALS", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo PLANTA
etl_process.write.submit(etl_process, "COMERCIAL_BASE")
etl_process.write.submit(etl_process, "COMERCIAL_BASE", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo INDIVIDUOS
etl_process.write.submit(etl_process, "INDIVIDUOS", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo ROLES
etl_process.write.submit(etl_process, "ROLES", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo ORGANIZACION
etl_process.write.submit(etl_process, "ORGANIZACION", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo UNIDADES
etl_process.write.submit(etl_process, "UNIDAD", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo ESTRUCTURA
etl_process.write.submit(etl_process, "ESTRUCTURA_ORGANIZACIONAL", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga de datos a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso ETL General: {time.time() - start_time}")
......
import time
import json
from typing import Any, Dict
from prefect import flow, get_run_logger
from Pipeline.ETLProcess import ETLProcess
SPARK_JARS = {
"AWS_CORE": "/opt/spark-jars/hadoop-aws-3.3.4.jar",
"BUNDLE": "/opt/spark-jars/aws-java-sdk-bundle-1.12.431.jar",
"COMMON": "/opt/spark-jars/hadoop-common-3.3.4.jar",
"AWS_CLIENT": "/opt/spark-jars/hadoop-client-3.3.4.jar",
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
}
STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
@flow
def run_etl(config: Dict[str, Any]) -> None:
logger = get_run_logger()
start_time = time.time()
etl_process = ETLProcess(config)
# Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time()
etl_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - (Reader) - Extraer los ficheros
start_reader = time.time()
etl_process.reader(etl_process)
logger.info(f"Duración de extracción de ficheros desde S3: {time.time() - start_reader}")
# Segundo task - Setear esquema a las tablas
start_transform = time.time()
etl_process.set_schema(etl_process)
# Process - Insumo Facturacion
teams_fact = etl_process.process_facturacion(etl_process, "FACTURACION")
logger.info(f"Duración de transformación y limpieza de datos: {time.time() - start_transform}")
start_load = time.time()
# Write - Insumo TEAMS
etl_process.write(etl_process, "FACTURACION", STARROK_JDBC, STARROK_FE_NODE, teams_fact)
# Write - Insumo GOALS
etl_process.write(etl_process, "ENDING", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga de datos a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso ETL General: {time.time() - start_time}")
if __name__ == "__main__":
conf_path = "config2.json"
with open(conf_path) as f:
conf = json.load(f)
# Run ETL
run_etl(conf)
aiosqlite==0.20.0
alembic==1.13.1
annotated-types==0.6.0
anyio==3.7.1
apprise==1.7.4
asgi-lifespan==2.1.0
async-timeout==4.0.3
asyncpg==0.29.0
attrs==23.2.0
cachetools==5.3.3
certifi==2024.2.2
cffi==1.16.0
charset-normalizer==3.3.2
click==8.1.7
cloudpickle==3.0.0
colorama==0.4.6
coolname==2.2.0
croniter==2.0.3
cryptography==42.0.5
dateparser==1.2.0
dnspython==2.6.1
docker==6.1.3
email_validator==2.1.1
exceptiongroup==1.2.0
fsspec==2024.3.1
google-auth==2.28.2
graphviz==0.20.2
greenlet==3.0.3
griffe==0.42.0
h11==0.14.0
h2==4.1.0
hpack==4.0.0
httpcore==1.0.4
httpx==0.27.0
hyperframe==6.0.1
idna==3.6
importlib_resources==6.1.3
itsdangerous==2.1.2
Jinja2==3.1.3
jsonpatch==1.33
jsonpointer==2.4
jsonschema==4.21.1
jsonschema-specifications==2023.12.1
kubernetes==29.0.0
Mako==1.3.2
Markdown==3.6
markdown-it-py==3.0.0
MarkupSafe==2.1.5
mdurl==0.1.2
oauthlib==3.2.2
orjson==3.9.15
packaging==24.0
pathspec==0.12.1
pendulum==2.1.2
prefect==2.16.4
py4j==0.10.9.7
pyasn1==0.5.1
pyasn1-modules==0.3.0
pycparser==2.21
pydantic==2.6.4
pydantic_core==2.16.3
Pygments==2.17.2
pyspark==3.4.0
python-dateutil==2.9.0.post0
python-multipart==0.0.9
python-slugify==8.0.4
pytz==2024.1
pytzdata==2020.1
PyYAML==6.0.1
readchar==4.0.6
referencing==0.34.0
regex==2023.12.25
requests==2.31.0
requests-oauthlib==1.4.0
rfc3339-validator==0.1.4
rich==13.7.1
rpds-py==0.18.0
rsa==4.9
ruamel.yaml==0.18.6
ruamel.yaml.clib==0.2.8
six==1.16.0
sniffio==1.3.1
SQLAlchemy==2.0.28
text-unidecode==1.3
toml==0.10.2
typer==0.9.0
typing_extensions==4.10.0
tzlocal==5.2
ujson==5.9.0
urllib3==2.2.1
uvicorn==0.28.1
websocket-client==1.7.0
websockets==12.0
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment