Commit a78f4f94 authored by Cristian Aguirre's avatar Cristian Aguirre

Add starroks.py

parent 9c72a0a6
from typing import Dict, Any from typing import Dict, Any, List
import logging import logging
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
...@@ -18,14 +18,23 @@ class BucketAwsInput: ...@@ -18,14 +18,23 @@ class BucketAwsInput:
self.schema = params["schema"] self.schema = params["schema"]
self.data = None self.data = None
def get_data(self) -> None: def get_data(self, replace: bool, replace_space_str: str) -> None:
try: try:
def replace_delimiters(line):
line = line.replace(replace_space_str, " ")
return line
file_type = FileTypeEnum(self.input_type) file_type = FileTypeEnum(self.input_type)
if not self.input_path.startswith("s3://") and not self.input_path.startswith("s3a://"): if not self.input_path.startswith("s3://") and not self.input_path.startswith("s3a://"):
raise Exception(f"Error getting descriptor from S3. Path should start with s3://") raise Exception(f"Error getting descriptor from S3. Path should start with s3://")
final_path = self.input_path final_path = self.input_path
if file_type == FileTypeEnum.CSV or file_type == FileTypeEnum.TXT: if file_type == FileTypeEnum.CSV or file_type == FileTypeEnum.TXT:
self.data = self.session.read.csv(final_path, header=True, sep=self.separator, inferSchema=True) if replace:
lines_rdd = self.session.sparkContext.textFile(final_path)
cleaned = lines_rdd.map(replace_delimiters)
self.data = self.session.read.csv(cleaned, header=True, sep=self.separator)
else:
self.data = self.session.read.csv(final_path, header=True, sep=self.separator)
elif file_type == FileTypeEnum.PARQUET: elif file_type == FileTypeEnum.PARQUET:
self.data = self.session.read.parquet(final_path, header=True) self.data = self.session.read.parquet(final_path, header=True)
else: else:
......
...@@ -17,7 +17,7 @@ class Input: ...@@ -17,7 +17,7 @@ class Input:
self.data = None self.data = None
def get_data(self) -> None: def get_data(self, replace: bool = False, replace_space_str: str = "\t") -> None:
self.factory.get_data() self.factory.get_data(replace, replace_space_str)
self.data = self.factory.data self.data = self.factory.data
This diff is collapsed.
from typing import Dict, Any from typing import Dict, Any
import logging import logging
from pyspark.sql.functions import col, when, lit from pyspark.sql.functions import col, when, lit, to_date, date_format, date_add
from pyspark.sql.types import StructType, StructField, StringType
from prefect import task from prefect import task
from Enum.DataTypeEnum import DataTypeEnum from Enum.DataTypeEnum import DataTypeEnum
...@@ -19,8 +20,8 @@ class ETLProcess: ...@@ -19,8 +20,8 @@ class ETLProcess:
self.inputs = {} self.inputs = {}
def init(self, spark_jars: Dict[str, str], mongodb_uri: str = "", starrok_uri: str = "") -> None: def init(self, spark_jars: Dict[str, str]) -> None:
self.session = createSession(self.identifier, spark_jars, mongodb_uri, starrok_uri) self.session = createSession(self.identifier, spark_jars)
@task @task
def reader(self) -> None: def reader(self) -> None:
...@@ -33,7 +34,11 @@ class ETLProcess: ...@@ -33,7 +34,11 @@ class ETLProcess:
params = {"identifier": identifier, "path": input_obj["path"], "type": input_obj["input_type"], params = {"identifier": identifier, "path": input_obj["path"], "type": input_obj["input_type"],
"separator": input_obj["separator"], "schema": input_obj["schema"]} "separator": input_obj["separator"], "schema": input_obj["schema"]}
current_input = Input(input_type, self.session, params, provider) current_input = Input(input_type, self.session, params, provider)
current_input.get_data() # Caso especial de reemplazar "\t" con " "
if identifier == "FACTURACION":
current_input.get_data(True)
else:
current_input.get_data()
self.inputs.update({identifier: current_input.data}) self.inputs.update({identifier: current_input.data})
except Exception as e: except Exception as e:
raise AssertionError(f"Error in function extrayendo data. Reader. {e}") raise AssertionError(f"Error in function extrayendo data. Reader. {e}")
...@@ -98,17 +103,40 @@ class ETLProcess: ...@@ -98,17 +103,40 @@ class ETLProcess:
return success return success
@task @task
def write(self, identifier: str, prev_status: bool = True) -> None: def process_facturacion(self, identifier: str) -> bool:
success = False
try:
df = self.inputs[identifier]
df = df.withColumn("fecha_vencimiento_fact", to_date(df["FECHA_VENCIMIENTO"], "dd/MM/yy"))
df = df.withColumn("fecha_periodo_fact",
to_date(date_format(col("PERIODO_PROCESO_CODIGO"), "yyyyMM") + "01", "yyyyMMdd"))
df = df.withColumn("FACTURA_VENCIDA",
when(date_add(col("fecha_periodo_fact"), 5) < col("fecha_vencimiento_fact"), lit("SI"))
.otherwise(lit("NO")))
self.inputs[identifier] = df
success = True
except Exception as e:
logger.error(f"Error transformando archivo de facturacion. {e}")
finally:
return success
@task
def write(self, identifier: str, starroks_jdbc: str, starroks_fe: str, prev_status: bool = True) -> None:
try: try:
# self.inputs[identifier].write.format("starrocks"). \ database = starroks_jdbc[starroks_jdbc.rfind("/")+1:]
# option("dbtable", identifier).mode("overwrite").save() starroks_user = self.conf["starroks"]["user"]
starroks_pass = self.conf["starroks"]["password"]
self.inputs[identifier].write.format("starrocks") \ self.inputs[identifier].write.format("starrocks") \
.option("starrocks.fe.http.url", "ec2-34-231-243-52.compute-1.amazonaws.com:8030") \ .option("starrocks.fe.http.url", starroks_fe) \
.option("starrocks.fe.jdbc.url", "jdbc:mysql://ec2-34-231-243-52.compute-1.amazonaws.com:9030/bcom_spark") \ .option("starrocks.fe.jdbc.url", starroks_jdbc) \
.option("starrocks.table.identifier", "bcom_spark."+identifier) \ .option("starrocks.table.identifier", database+"."+identifier) \
.option("starrocks.user", "root") \ .option("starrocks.user", starroks_user) \
.option("starrocks.password", "") \ .option("starrocks.password", starroks_pass) \
.mode("append") \ .mode("append") \
.save() .save()
except Exception as e: except Exception as e:
logger.error(f"Erro guardando resultados. {e}") logger.error(f"Error guardando resultados. {e}")
from typing import Dict from typing import Dict
from pyspark.sql import SparkSession, DataFrame from pyspark.sql import SparkSession
from pyspark.sql.functions import col, udf
from pyspark.sql.types import ArrayType, StringType
import logging import logging
logger = logging.getLogger() logger = logging.getLogger()
def createSession(name: str, spark_jars: Dict[str, str], mongodb_uri: str, starrok_uri: str) -> SparkSession: def createSession(name: str, spark_jars: Dict[str, str]) -> SparkSession:
session = None session = None
try: try:
jars = list(spark_jars.values()) jars = list(spark_jars.values())
jars = ",".join(jars) jars = ",".join(jars)
session = SparkSession.builder \ session = SparkSession.builder \
.appName(name) \ .appName(name) \
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") \
.config("spark.hadoop.fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.DefaultAWSCredentialsProviderChain") \
.config("spark.jars", jars) \ .config("spark.jars", jars) \
.config("spark.jars.packages", "graphframes:graphframes:0.8.3-spark3.4-s_2.12") \
.config("spark.executor.extraClassPath", jars) \ .config("spark.executor.extraClassPath", jars) \
.config("spark.driver.extraClassPath", jars) \ .config("spark.driver.extraClassPath", jars) \
.config("spark.mongodb.input.uri", mongodb_uri) \ .config("spark.starrocks.driver", "com.starroks.jdbc.Driver") \
.config("spark.mongodb.output.uri", mongodb_uri) \ .config("spark.sql.catalogImplementation", "in-memory") \
.getOrCreate() .getOrCreate()
# .config("spark.starrocks.url", starrok_uri) \
# .config("spark.starrocks.driver", "com.starroks.jdbc.Driver") \
# .config("spark.sql.catalogImplementation", "in-memory") \
# .getOrCreate()
session._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") session._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
session._jsc.hadoopConfiguration().set("fs.s3a.endpoint", "http://192.168.21.47:9000")
session._jsc.hadoopConfiguration().set("fs.s3a.connection.ssl.enabled", "false")
session._jsc.hadoopConfiguration().set("fs.s3a.path.style.access", "true")
session._jsc.hadoopConfiguration().set("fs.s3a.access.key", "minioadmin")
session._jsc.hadoopConfiguration().set("fs.s3a.secret.key", "minioadmin")
except Exception as e: except Exception as e:
logger.error(f"Error creando sesion. {e}") logger.error(f"Error creando sesion. {e}")
finally: finally:
return session return session
def get_goal_by_kpi(df: DataFrame, agent: str, period: str, kpi: str) -> float: def find_related_vertices(graph):
result = 0.0 # Obtener vértices y aristas del grafo
try: vertices = graph.vertices
df = df.filter((df["CEDULA"] == agent) & (df["PERIODO_PROCESO_CODIGO"] == period) & (df["KPI"] == kpi)). \ edges = graph.edges
select("META_FINAL")
if df.count() != 0:
results = [row[0] for row in df.select("META_FINAL").collect()]
result = results[0]
except Exception as e:
logger.error(f"Error obteniendo meta por kpi. {e}")
finally:
return result
# Diccionario para almacenar los vértices relacionados para cada vértice
related_vertices_dict = {}
def get_execute_by_service(df: DataFrame, agent: str, period: str, segment: str) -> int: # Función de búsqueda en profundidad (DFS)
result = 0 def dfs(vertex_id, related_vertices):
try: # Agregar el vértice actual a la lista de relacionados
df = df.filter((df["AGENTE_COMISIONA"] == agent) & (df["PERIODO_PROCESO_CODIGO"] == period) & related_vertices.add(vertex_id)
(df["SEGMENTO"] == segment))
result = df.count() # Encontrar vértices relacionados directamente al vértice actual
except Exception as e: direct_related = edges.filter(edges.src == vertex_id).select("dst").collect()
logger.error(f"Error obteniendo meta por segmento. {e}")
finally: # Explorar cada vértice relacionado directamente
return result for row in direct_related:
related_vertex_id = row["dst"]
# Si el vértice relacionado no ha sido visitado, realizar DFS en él
if related_vertex_id not in related_vertices:
dfs(related_vertex_id, related_vertices)
# Obtener los valores únicos de los vértices
unique_vertices = vertices.select("id").distinct().collect()
# Iterar sobre los vértices únicos
for i, row in enumerate(unique_vertices):
vertex_id = row["id"]
# Inicializar un conjunto para almacenar vértices relacionados
related_vertices = set()
# Realizar DFS para encontrar todas las relaciones del vértice actual
dfs(vertex_id, related_vertices)
# Agregar los vértices relacionados al diccionario
related_vertices_dict[vertex_id] = list(related_vertices)
related_vertices_dict[vertex_id].remove(vertex_id)
return related_vertices_dict
...@@ -7,13 +7,12 @@ from prefect import flow, get_run_logger ...@@ -7,13 +7,12 @@ from prefect import flow, get_run_logger
from Pipeline.CommissionProcess import CommissionProcess from Pipeline.CommissionProcess import CommissionProcess
SPARK_JARS = { SPARK_JARS = {
"MONGO_CORE": "/opt/spark-jars/mongodb-driver-core-4.0.4.jar", "STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MONGO_CLIENT": "/opt/spark-jars/mongodb-driver-sync-4.0.4.jar", "MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
"MONGODB": "/opt/spark-jars/mongo-spark-connector_2.12-3.0.1.jar",
"BSON": "/opt/spark-jars/bson-4.0.4.jar"
} }
MONGODB_URI = "mongodb://bcom_spark_user:root@192.168.1.37:50001/bcom_spark" STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
@flow() @flow()
...@@ -25,20 +24,20 @@ def run_commission(config: Dict[str, Any]) -> None: ...@@ -25,20 +24,20 @@ def run_commission(config: Dict[str, Any]) -> None:
# Conexion a Spark (LocalMode, StandAlone or Clúster) # Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time() start_init = time.time()
commission_process.init(SPARK_JARS, MONGODB_URI) commission_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}") logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - Extraer la data - RECORDAR: SPARK ES LAZY!!! # Primer task - Extraer la data - RECORDAR: SPARK ES LAZY!!!
start_reader = time.time() start_reader = time.time()
commission_process.get_inputs(commission_process) commission_process.get_inputs(commission_process, STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de extracción de datos desde la BD: {time.time() - start_reader}") logger.info(f"Duración de extracción de datos desde la BD: {time.time() - start_reader}")
# Tercer task - Obtener metas # Tercer task - Obtener metas
start_process = time.time() start_process = time.time()
goals = commission_process.get_goals_second_way(commission_process, "VENTAS", "GOALS") goals = commission_process.get_goals(commission_process, "VENTAS", "GOALS")
# Quinto task - Obtener ejecutados - ¿Aplicar tmb filtro de FLAG_COMISIONABLE y ACTIVE_USER_TRAFFIC? # Quinto task - Obtener ejecutados - ¿Aplicar tmb filtro de FLAG_COMISIONABLE y ACTIVE_USER_TRAFFIC?
executes = commission_process.get_executed_second_way(commission_process, "VENTAS", "TEAMS") executes = commission_process.get_executed(commission_process, "VENTAS", "TEAMS")
# Sexo task - Obtener monto origen # Sexo task - Obtener monto origen
base = commission_process.get_source_value(commission_process, "VENTAS", "COMERCIAL_BASE") base = commission_process.get_source_value(commission_process, "VENTAS", "COMERCIAL_BASE")
...@@ -48,10 +47,10 @@ def run_commission(config: Dict[str, Any]) -> None: ...@@ -48,10 +47,10 @@ def run_commission(config: Dict[str, Any]) -> None:
# Task de escritura # Task de escritura
start_load = time.time() start_load = time.time()
_ = commission_process.write_result(commission_process, result, "REPORT_SUMMARY") _ = commission_process.write_result(commission_process, result, "REPORT_SUMMARY", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga del reporte a la BD: {time.time() - start_load}") logger.info(f"Duración de carga del reporte a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso de etl: {time.time() - start_time}") logger.info(f"Duración de ejecución del proceso de comision: {time.time() - start_time}")
if __name__ == "__main__": if __name__ == "__main__":
......
import time
import json
from typing import Any, Dict
from prefect import flow, get_run_logger
from Pipeline.CommissionProcess import CommissionProcess
SPARK_JARS = {
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
}
STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
@flow()
def run_commission(config: Dict[str, Any]) -> None:
logger = get_run_logger()
start_time = time.time()
commission_process = CommissionProcess(config)
# Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time()
commission_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - Extraer la data - RECORDAR: SPARK ES LAZY!!!
start_reader = time.time()
commission_process.get_inputs(commission_process, STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de extracción de datos desde la BD: {time.time() - start_reader}")
# Tercer task - Obtener metas
start_process = time.time()
goals = commission_process.get_goals_2(commission_process, "GOALS", "ESTRUCTURA_ORGANIZACIONAL")
# Quinto task - Obtener ejecutados - ¿Aplicar tmb filtro de FLAG_COMISIONABLE y ACTIVE_USER_TRAFFIC?
executes = commission_process.get_executed_2(commission_process, "ESTRUCTURA_ORGANIZACIONAL", "TEAMS", "VENTAS")
#
# Sexo task - Obtener monto origen
base = commission_process.get_source_value_2(commission_process, "ESTRUCTURA_ORGANIZACIONAL", "COMERCIAL_BASE")
# Segundo task - Crear jerarquía
start_process = time.time()
# ["AGENTES", "ESTRUCTURA", "UO", "OGRANIZACIONES"]
identifiers = ["INDIVIDUOS", "ESTRUCTURA_ORGANIZACIONAL", "UNIDAD", "ORGANIZACION"]
jerarquia_graph = commission_process.create_jerarquia(commission_process, identifiers, goals, executes, base)
logger.info(f"Duración de creación de dataframes con grafos (jerarquía): {time.time() - start_process}")
result = commission_process.update_executes(commission_process, jerarquia_graph, goals, executes, base)
result = commission_process.get_commission_per_agent_2(commission_process, result)
logger.info(f"Duración de procesamiento en memoria: {time.time() - start_process}")
# Task de escritura
start_load = time.time()
_ = commission_process.write_result(commission_process, result, "REPORT_SUMMARY", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga del reporte a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso de comision: {time.time() - start_time}")
if __name__ == "__main__":
conf_path = "config.json"
with open(conf_path) as f:
conf = json.load(f)
# Run Commission
run_commission(conf)
...@@ -9,7 +9,7 @@ ...@@ -9,7 +9,7 @@
"data": [ "data": [
{ {
"identifier": "VENTAS", "identifier": "VENTAS",
"path": "s3a://prueba-id/bcom-tests/inputs/gross_202311.txt", "path": "s3a://prueba-id/inputs_spark/gross_202311.txt",
"input_type": "txt", "input_type": "txt",
"separator": "|", "separator": "|",
"schema": { "schema": {
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
}, },
{ {
"identifier": "TEAMS", "identifier": "TEAMS",
"path": "s3a://prueba-id/bcom-tests/inputs/equipos_202311.txt", "path": "s3a://prueba-id/inputs_spark/equipos_202311.txt",
"input_type": "txt", "input_type": "txt",
"separator": "|", "separator": "|",
"schema": { "schema": {
...@@ -45,7 +45,7 @@ ...@@ -45,7 +45,7 @@
}, },
{ {
"identifier": "GOALS", "identifier": "GOALS",
"path": "s3a://prueba-id/bcom-tests/inputs/metas_202311.csv", "path": "s3a://prueba-id/inputs_spark/metas_202311.csv",
"input_type": "csv", "input_type": "csv",
"separator": ";", "separator": ";",
"schema": { "schema": {
...@@ -58,7 +58,7 @@ ...@@ -58,7 +58,7 @@
}, },
{ {
"identifier": "COMERCIAL_BASE", "identifier": "COMERCIAL_BASE",
"path": "s3a://prueba-id/bcom-tests/inputs/planta_comercial_202311.csv", "path": "s3a://prueba-id/inputs_spark/planta_comercial_202311.csv",
"input_type": "csv", "input_type": "csv",
"separator": ";", "separator": ";",
"schema": { "schema": {
...@@ -67,14 +67,92 @@ ...@@ -67,14 +67,92 @@
"ESTADO": "TEXT", "ESTADO": "TEXT",
"VARIABLE_COMISION": "DECIMAL" "VARIABLE_COMISION": "DECIMAL"
} }
},
{
"identifier": "INDIVIDUOS",
"path": "s3a://prueba-id/inputs_spark/individuos_2023111813.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIIN_NAMES": "TEXT",
"PIIN_LASTN": "TEXT",
"PIIN_IDENT": "TEXT",
"PIIN_TDOCU": "TEXT",
"PIIN_SLIQU": "TEXT",
"PIIN_CURRE": "TEXT",
"PIIN_BASAL": "DECIMAL",
"PIIN_CPERS": "TEXT",
"PIIN_CPHON": "TEXT",
"PIIN_CEMAI": "TEXT",
"UBIG_IDENT": "TEXT"
}
},
{
"identifier": "ROLES",
"path": "s3a://prueba-id/inputs_spark/roles_2023111812.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIRO_IDENT": "TEXT",
"PIRO_NAME": "TEXT"
}
},
{
"identifier": "ORGANIZACION",
"path": "s3a://prueba-id/inputs_spark/organizaciones_2023111813.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIOR_ORGID": "TEXT",
"PIOR_NAME": "TEXT",
"PIOR_IDENT": "TEXT",
"PIOR_SLIQU": "TEXT",
"PIOR_TCHAN": "TEXT",
"PIOR_CCHAN": "TEXT",
"PIOR_CPERS": "TEXT",
"PIOR_CPHON": "TEXT",
"PIOR_CEMAI": "TEXT",
"PIOR_RESPO": "TEXT",
"PIOR_REPRE": "TEXT",
"UBIG_IDENT": "TEXT",
"PIOR_LIQIN": "TEXT"
}
},
{
"identifier": "UNIDAD",
"path": "s3a://prueba-id/inputs_spark/unidades_organizacionales_2023111812.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIOU_ORGID": "TEXT",
"PIOU_NAME": "TEXT",
"PIOU_UOTYP": "TEXT",
"PIOU_BEORG": "TEXT",
"PIOU_CPERS": "TEXT",
"PIOU_CPHON": "TEXT",
"PIOU_CEMAI": "TEXT",
"PIOU_RESPO": "TEXT",
"PIOU_SEGME": "TEXT",
"UBIG_IDENT": "TEXT"
}
},
{
"identifier": "ESTRUCTURA_ORGANIZACIONAL",
"path": "s3a://prueba-id/inputs_spark/estructura_organizacional_2023111812.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PIOS_ORGID": "TEXT",
"PIOS_INDID": "TEXT",
"PIOS_ROLID": "TEXT",
"PIOS_SUPER": "TEXT"
}
} }
] ]
}, },
"output": { "starroks": {
"type": "bucket", "user": "root",
"params": { "password": ""
"provider": "aws",
"bucket": "prueba-id"
}
} }
} }
\ No newline at end of file
{
"identifier": "BCOM-SPARK-TESTS2",
"inputs": {
"type": "bucket",
"params": {
"provider": "aws"
},
"data": [
{
"identifier": "FACTURACION",
"path": "s3a://prueba-id/bcom-tests/inputs/Facturacion_20240320.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PERIODO_PROCESO_CODIGO": "TEXT",
"NOMBRE_CLIENTE": "TEXT",
"NUM_FACTURA": "TEXT",
"DOCUMENTO": "TEXT",
"CIUDAD": "TEXT",
"FECHA_VENCIMIENTO": "TEXT",
"SUBS_ID": "TEXT",
"ESTADO_FACTURA": "TEXT"
}
},
{
"identifier": "ENDING",
"path": "s3a://prueba-id/bcom-tests/inputs/Ending_20240320.csv",
"input_type": "csv",
"separator": ";",
"schema": {
"PERIODO_PROCESO_CODIGO": "TEXT",
"SUBSCRIBER_ID": "TEXT",
"SERVICIO": "TEXT",
"ESTADO": "TEXT",
"MOVIMIENTO_NOMBRE": "TEXT",
"OPERADOR_PORTA_DESTINO": "TEXT",
"REVENUE": "DECIMAL"
}
}
]
},
"starroks": {
"user": "root",
"password": ""
}
}
\ No newline at end of file
...@@ -11,17 +11,12 @@ SPARK_JARS = { ...@@ -11,17 +11,12 @@ SPARK_JARS = {
"BUNDLE": "/opt/spark-jars/aws-java-sdk-bundle-1.12.431.jar", "BUNDLE": "/opt/spark-jars/aws-java-sdk-bundle-1.12.431.jar",
"COMMON": "/opt/spark-jars/hadoop-common-3.3.4.jar", "COMMON": "/opt/spark-jars/hadoop-common-3.3.4.jar",
"AWS_CLIENT": "/opt/spark-jars/hadoop-client-3.3.4.jar", "AWS_CLIENT": "/opt/spark-jars/hadoop-client-3.3.4.jar",
"MONGO_CORE": "/opt/spark-jars/mongodb-driver-core-4.0.4.jar", "STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MONGO_CLIENT": "/opt/spark-jars/mongodb-driver-sync-4.0.4.jar",
"MONGODB": "/opt/spark-jars/mongo-spark-connector_2.12-3.0.1.jar",
"BSON": "/opt/spark-jars/bson-4.0.4.jar",
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.4_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar" "MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
} }
MONGODB_URI = "mongodb://bcom_spark_user:root@192.168.1.37:50001/bcom_spark" STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
STARROK_URI = "jdbc:starroks://root:@ec2-3-237-32-62.compute-1.amazonaws.com:9030/bcom_spark"
@flow @flow
...@@ -34,7 +29,7 @@ def run_etl(config: Dict[str, Any]) -> None: ...@@ -34,7 +29,7 @@ def run_etl(config: Dict[str, Any]) -> None:
# Conexion a Spark (LocalMode, StandAlone or Clúster) # Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time() start_init = time.time()
etl_process.init(SPARK_JARS, starrok_uri=STARROK_URI) etl_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}") logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - (Reader) - Extraer los ficheros # Primer task - (Reader) - Extraer los ficheros
...@@ -55,13 +50,23 @@ def run_etl(config: Dict[str, Any]) -> None: ...@@ -55,13 +50,23 @@ def run_etl(config: Dict[str, Any]) -> None:
# Write - Insumo GROSS # Write - Insumo GROSS
start_load = time.time() start_load = time.time()
etl_process.write.submit(etl_process, "VENTAS", ventas_flag) etl_process.write.submit(etl_process, "VENTAS", STARROK_JDBC, STARROK_FE_NODE, ventas_flag)
# Write - Insumo TEAMS # Write - Insumo TEAMS
etl_process.write.submit(etl_process, "TEAMS", teams_flag) etl_process.write.submit(etl_process, "TEAMS", STARROK_JDBC, STARROK_FE_NODE, teams_flag)
# Write - Insumo GOALS # Write - Insumo GOALS
etl_process.write.submit(etl_process, "GOALS") etl_process.write.submit(etl_process, "GOALS", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo PLANTA # Write - Insumo PLANTA
etl_process.write.submit(etl_process, "COMERCIAL_BASE") etl_process.write.submit(etl_process, "COMERCIAL_BASE", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo INDIVIDUOS
etl_process.write.submit(etl_process, "INDIVIDUOS", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo ROLES
etl_process.write.submit(etl_process, "ROLES", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo ORGANIZACION
etl_process.write.submit(etl_process, "ORGANIZACION", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo UNIDADES
etl_process.write.submit(etl_process, "UNIDAD", STARROK_JDBC, STARROK_FE_NODE)
# Write - Insumo ESTRUCTURA
etl_process.write.submit(etl_process, "ESTRUCTURA_ORGANIZACIONAL", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga de datos a la BD: {time.time() - start_load}") logger.info(f"Duración de carga de datos a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso ETL General: {time.time() - start_time}") logger.info(f"Duración de ejecución del proceso ETL General: {time.time() - start_time}")
......
import time
import json
from typing import Any, Dict
from prefect import flow, get_run_logger
from Pipeline.ETLProcess import ETLProcess
SPARK_JARS = {
"AWS_CORE": "/opt/spark-jars/hadoop-aws-3.3.4.jar",
"BUNDLE": "/opt/spark-jars/aws-java-sdk-bundle-1.12.431.jar",
"COMMON": "/opt/spark-jars/hadoop-common-3.3.4.jar",
"AWS_CLIENT": "/opt/spark-jars/hadoop-client-3.3.4.jar",
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.2_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
}
STARROK_JDBC = "jdbc:mysql://192.168.1.37:9030/bcom_spark"
STARROK_FE_NODE = "192.168.1.37:8030"
@flow
def run_etl(config: Dict[str, Any]) -> None:
logger = get_run_logger()
start_time = time.time()
etl_process = ETLProcess(config)
# Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time()
etl_process.init(SPARK_JARS)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - (Reader) - Extraer los ficheros
start_reader = time.time()
etl_process.reader(etl_process)
logger.info(f"Duración de extracción de ficheros desde S3: {time.time() - start_reader}")
# Segundo task - Setear esquema a las tablas
start_transform = time.time()
etl_process.set_schema(etl_process)
# Process - Insumo Facturacion
teams_fact = etl_process.process_facturacion(etl_process, "FACTURACION")
logger.info(f"Duración de transformación y limpieza de datos: {time.time() - start_transform}")
start_load = time.time()
# Write - Insumo TEAMS
etl_process.write(etl_process, "FACTURACION", STARROK_JDBC, STARROK_FE_NODE, teams_fact)
# Write - Insumo GOALS
etl_process.write(etl_process, "ENDING", STARROK_JDBC, STARROK_FE_NODE)
logger.info(f"Duración de carga de datos a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso ETL General: {time.time() - start_time}")
if __name__ == "__main__":
conf_path = "config2.json"
with open(conf_path) as f:
conf = json.load(f)
# Run ETL
run_etl(conf)
aiosqlite==0.20.0
alembic==1.13.1
annotated-types==0.6.0
anyio==3.7.1
apprise==1.7.4
asgi-lifespan==2.1.0
async-timeout==4.0.3
asyncpg==0.29.0
attrs==23.2.0
cachetools==5.3.3
certifi==2024.2.2
cffi==1.16.0
charset-normalizer==3.3.2
click==8.1.7
cloudpickle==3.0.0
colorama==0.4.6
coolname==2.2.0
croniter==2.0.3
cryptography==42.0.5
dateparser==1.2.0
dnspython==2.6.1
docker==6.1.3
email_validator==2.1.1
exceptiongroup==1.2.0
fsspec==2024.3.1
google-auth==2.28.2
graphviz==0.20.2
greenlet==3.0.3
griffe==0.42.0
h11==0.14.0
h2==4.1.0
hpack==4.0.0
httpcore==1.0.4
httpx==0.27.0
hyperframe==6.0.1
idna==3.6
importlib_resources==6.1.3
itsdangerous==2.1.2
Jinja2==3.1.3
jsonpatch==1.33
jsonpointer==2.4
jsonschema==4.21.1
jsonschema-specifications==2023.12.1
kubernetes==29.0.0
Mako==1.3.2
Markdown==3.6
markdown-it-py==3.0.0
MarkupSafe==2.1.5
mdurl==0.1.2
oauthlib==3.2.2
orjson==3.9.15
packaging==24.0
pathspec==0.12.1
pendulum==2.1.2
prefect==2.16.4
py4j==0.10.9.7
pyasn1==0.5.1
pyasn1-modules==0.3.0
pycparser==2.21
pydantic==2.6.4
pydantic_core==2.16.3
Pygments==2.17.2
pyspark==3.4.0
python-dateutil==2.9.0.post0
python-multipart==0.0.9
python-slugify==8.0.4
pytz==2024.1
pytzdata==2020.1
PyYAML==6.0.1
readchar==4.0.6
referencing==0.34.0
regex==2023.12.25
requests==2.31.0
requests-oauthlib==1.4.0
rfc3339-validator==0.1.4
rich==13.7.1
rpds-py==0.18.0
rsa==4.9
ruamel.yaml==0.18.6
ruamel.yaml.clib==0.2.8
six==1.16.0
sniffio==1.3.1
SQLAlchemy==2.0.28
text-unidecode==1.3
toml==0.10.2
typer==0.9.0
typing_extensions==4.10.0
tzlocal==5.2
ujson==5.9.0
urllib3==2.2.1
uvicorn==0.28.1
websocket-client==1.7.0
websockets==12.0
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment