Commit 9c72a0a6 authored by Cristian Aguirre's avatar Cristian Aguirre

Add starroks.py

parent 15b44e0a
This diff is collapsed.
...@@ -19,8 +19,8 @@ class ETLProcess: ...@@ -19,8 +19,8 @@ class ETLProcess:
self.inputs = {} self.inputs = {}
def init(self, spark_jars: Dict[str, str], mongodb_uri: str = "") -> None: def init(self, spark_jars: Dict[str, str], mongodb_uri: str = "", starrok_uri: str = "") -> None:
self.session = createSession(self.identifier, spark_jars, mongodb_uri) self.session = createSession(self.identifier, spark_jars, mongodb_uri, starrok_uri)
@task @task
def reader(self) -> None: def reader(self) -> None:
...@@ -79,7 +79,7 @@ class ETLProcess: ...@@ -79,7 +79,7 @@ class ETLProcess:
self.inputs[identifier] = self.inputs[identifier].withColumn("TIPO_CANAL", lit("DIRECT")) self.inputs[identifier] = self.inputs[identifier].withColumn("TIPO_CANAL", lit("DIRECT"))
success = True success = True
except Exception as e: except Exception as e:
raise AssertionError(f"Error transformando archivo gross. {e}") logger.error(f"Error transformando archivo gross. {e}")
finally: finally:
return success return success
...@@ -100,8 +100,15 @@ class ETLProcess: ...@@ -100,8 +100,15 @@ class ETLProcess:
@task @task
def write(self, identifier: str, prev_status: bool = True) -> None: def write(self, identifier: str, prev_status: bool = True) -> None:
try: try:
self.inputs[identifier].printSchema() # self.inputs[identifier].write.format("starrocks"). \
self.inputs[identifier].write.format("com.mongodb.spark.sql.DefaultSource"). \ # option("dbtable", identifier).mode("overwrite").save()
option("collection", identifier).mode("append").save() self.inputs[identifier].write.format("starrocks") \
.option("starrocks.fe.http.url", "ec2-34-231-243-52.compute-1.amazonaws.com:8030") \
.option("starrocks.fe.jdbc.url", "jdbc:mysql://ec2-34-231-243-52.compute-1.amazonaws.com:9030/bcom_spark") \
.option("starrocks.table.identifier", "bcom_spark."+identifier) \
.option("starrocks.user", "root") \
.option("starrocks.password", "") \
.mode("append") \
.save()
except Exception as e: except Exception as e:
logger.error(f"Erro guardando resultados. {e}") logger.error(f"Erro guardando resultados. {e}")
import logging
from typing import Dict, Any
from pyspark.sql import SparkSession, DataFrame
from prefect import flow, task
from Input.Source import Input
logger = logging.getLogger()
class Process:
def __init__(self, config: Dict[str, Any]) -> None:
self.conf = config
self.identifier = self.conf["identifier"]
self.session = None
self.inputs = {}
def init(self) -> None:
self._createSession()
def get_inputs(self) -> None:
try:
pass
except Exception as e:
raise AssertionError(f"Error in function 'get_inputs'. {e}")
def run(self) -> None:
# Get inputs
self.get_inputs()
from typing import Dict from typing import Dict
from pyspark.sql import SparkSession from pyspark.sql import SparkSession, DataFrame
import logging import logging
logger = logging.getLogger() logger = logging.getLogger()
def createSession(name: str, spark_jars: Dict[str, str], mongodb_uri: str = "") -> SparkSession: def createSession(name: str, spark_jars: Dict[str, str], mongodb_uri: str, starrok_uri: str) -> SparkSession:
session = None session = None
try: try:
jars = list(spark_jars.values()) jars = list(spark_jars.values())
jars = ",".join(jars) jars = ",".join(jars)
print(jars)
session = SparkSession.builder \ session = SparkSession.builder \
.appName(name) \ .appName(name) \
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") \ .config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") \
...@@ -20,10 +19,41 @@ def createSession(name: str, spark_jars: Dict[str, str], mongodb_uri: str = "") ...@@ -20,10 +19,41 @@ def createSession(name: str, spark_jars: Dict[str, str], mongodb_uri: str = "")
.config("spark.jars", jars) \ .config("spark.jars", jars) \
.config("spark.executor.extraClassPath", jars) \ .config("spark.executor.extraClassPath", jars) \
.config("spark.driver.extraClassPath", jars) \ .config("spark.driver.extraClassPath", jars) \
.config("spark.mongodb.input.uri", mongodb_uri) \
.config("spark.mongodb.output.uri", mongodb_uri) \ .config("spark.mongodb.output.uri", mongodb_uri) \
.getOrCreate() .getOrCreate()
# .config("spark.starrocks.url", starrok_uri) \
# .config("spark.starrocks.driver", "com.starroks.jdbc.Driver") \
# .config("spark.sql.catalogImplementation", "in-memory") \
# .getOrCreate()
session._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") session._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
except Exception as e: except Exception as e:
logger.error(f"Error creando sesion. {e}") logger.error(f"Error creando sesion. {e}")
finally: finally:
return session return session
def get_goal_by_kpi(df: DataFrame, agent: str, period: str, kpi: str) -> float:
result = 0.0
try:
df = df.filter((df["CEDULA"] == agent) & (df["PERIODO_PROCESO_CODIGO"] == period) & (df["KPI"] == kpi)). \
select("META_FINAL")
if df.count() != 0:
results = [row[0] for row in df.select("META_FINAL").collect()]
result = results[0]
except Exception as e:
logger.error(f"Error obteniendo meta por kpi. {e}")
finally:
return result
def get_execute_by_service(df: DataFrame, agent: str, period: str, segment: str) -> int:
result = 0
try:
df = df.filter((df["AGENTE_COMISIONA"] == agent) & (df["PERIODO_PROCESO_CODIGO"] == period) &
(df["SEGMENTO"] == segment))
result = df.count()
except Exception as e:
logger.error(f"Error obteniendo meta por segmento. {e}")
finally:
return result
import time import time
import json import json
import logging
from typing import Any, Dict from typing import Any, Dict
from prefect import flow from prefect import flow, get_run_logger
from Pipeline.CommissionProcess import CommissionProcess
logger = logging.getLogger() SPARK_JARS = {
"MONGO_CORE": "/opt/spark-jars/mongodb-driver-core-4.0.4.jar",
"MONGO_CLIENT": "/opt/spark-jars/mongodb-driver-sync-4.0.4.jar",
"MONGODB": "/opt/spark-jars/mongo-spark-connector_2.12-3.0.1.jar",
"BSON": "/opt/spark-jars/bson-4.0.4.jar"
}
MONGODB_URI = "mongodb://bcom_spark_user:root@192.168.1.37:50001/bcom_spark"
@flow() @flow()
def run_commission(config: Dict[str, Any]) -> None: def run_commission(config: Dict[str, Any]) -> None:
logger = get_run_logger()
start_time = time.time() start_time = time.time()
logger.info(f"Duración de ejecución del proceso de liquidación: {start_time - time.time()}") commission_process = CommissionProcess(config)
# Conexion a Spark (LocalMode, StandAlone or Clúster)
start_init = time.time()
commission_process.init(SPARK_JARS, MONGODB_URI)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - Extraer la data - RECORDAR: SPARK ES LAZY!!!
start_reader = time.time()
commission_process.get_inputs(commission_process)
logger.info(f"Duración de extracción de datos desde la BD: {time.time() - start_reader}")
# Tercer task - Obtener metas
start_process = time.time()
goals = commission_process.get_goals_second_way(commission_process, "VENTAS", "GOALS")
# Quinto task - Obtener ejecutados - ¿Aplicar tmb filtro de FLAG_COMISIONABLE y ACTIVE_USER_TRAFFIC?
executes = commission_process.get_executed_second_way(commission_process, "VENTAS", "TEAMS")
# Sexo task - Obtener monto origen
base = commission_process.get_source_value(commission_process, "VENTAS", "COMERCIAL_BASE")
result = commission_process.get_commission_per_agent(commission_process, goals, executes, base)
logger.info(f"Duración de procesamiento en memoria: {time.time() - start_process}")
# Task de escritura
start_load = time.time()
_ = commission_process.write_result(commission_process, result, "REPORT_SUMMARY")
logger.info(f"Duración de carga del reporte a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso de etl: {time.time() - start_time}")
if __name__ == "__main__": if __name__ == "__main__":
......
{ {
"identifier": "BCOM-SPARK-TESTS", "identifier": "BCOM-SPARK-TESTS",
"period": "202311",
"inputs": { "inputs": {
"type": "bucket", "type": "bucket",
"params": { "params": {
...@@ -19,6 +20,7 @@ ...@@ -19,6 +20,7 @@
"CONSULTOR_NK": "TEXT", "CONSULTOR_NK": "TEXT",
"CLIENTE_ID": "TEXT", "CLIENTE_ID": "TEXT",
"CLIENTE_NOMBRE": "TEXT", "CLIENTE_NOMBRE": "TEXT",
"CLIENTE_NATURALEZA": "TEXT",
"SERVICIO": "TEXT", "SERVICIO": "TEXT",
"REVENUE": "DECIMAL", "REVENUE": "DECIMAL",
"PLAN_CODIGIO_NK": "TEXT", "PLAN_CODIGIO_NK": "TEXT",
......
import time import time
import json import json
import logging
from typing import Any, Dict from typing import Any, Dict
from prefect import flow from prefect import flow, get_run_logger
from Pipeline.ETLProcess import ETLProcess from Pipeline.ETLProcess import ETLProcess
logger = logging.getLogger()
SPARK_JARS = { SPARK_JARS = {
"AWS_CORE": "/opt/spark-jars/hadoop-aws-3.3.4.jar", "AWS_CORE": "/opt/spark-jars/hadoop-aws-3.3.4.jar",
"BUNDLE": "/opt/spark-jars/aws-java-sdk-bundle-1.12.431.jar", "BUNDLE": "/opt/spark-jars/aws-java-sdk-bundle-1.12.431.jar",
...@@ -17,23 +14,36 @@ SPARK_JARS = { ...@@ -17,23 +14,36 @@ SPARK_JARS = {
"MONGO_CORE": "/opt/spark-jars/mongodb-driver-core-4.0.4.jar", "MONGO_CORE": "/opt/spark-jars/mongodb-driver-core-4.0.4.jar",
"MONGO_CLIENT": "/opt/spark-jars/mongodb-driver-sync-4.0.4.jar", "MONGO_CLIENT": "/opt/spark-jars/mongodb-driver-sync-4.0.4.jar",
"MONGODB": "/opt/spark-jars/mongo-spark-connector_2.12-3.0.1.jar", "MONGODB": "/opt/spark-jars/mongo-spark-connector_2.12-3.0.1.jar",
"BSON": "/opt/spark-jars/bson-4.0.4.jar" "BSON": "/opt/spark-jars/bson-4.0.4.jar",
"STARROK": "/opt/spark-jars/starrocks-spark-connector-3.4_2.12-1.1.2.jar",
"MYSQL": "/opt/spark-jars/mysql-connector-java-8.0.30.jar"
} }
MONGODB_URI = "mongodb://bcom_spark_user:root@192.168.1.37:50001/bcom_spark" MONGODB_URI = "mongodb://bcom_spark_user:root@192.168.1.37:50001/bcom_spark"
STARROK_URI = "jdbc:starroks://root:@ec2-3-237-32-62.compute-1.amazonaws.com:9030/bcom_spark"
@flow @flow
def run_etl(config: Dict[str, Any]) -> None: def run_etl(config: Dict[str, Any]) -> None:
logger = get_run_logger()
start_time = time.time() start_time = time.time()
etl_process = ETLProcess(config) etl_process = ETLProcess(config)
# Conexion a Spark (LocalMode, StandAlone or Clúster) # Conexion a Spark (LocalMode, StandAlone or Clúster)
etl_process.init(SPARK_JARS, MONGODB_URI) start_init = time.time()
etl_process.init(SPARK_JARS, starrok_uri=STARROK_URI)
logger.info(f"Duración de creación de sesión Spark: {time.time() - start_init}")
# Primer task - (Reader) - Extraer los ficheros # Primer task - (Reader) - Extraer los ficheros
start_reader = time.time()
etl_process.reader(etl_process) etl_process.reader(etl_process)
logger.info(f"Duración de extracción de ficheros desde S3: {time.time() - start_reader}")
# Segundo task - Setear esquema a las tablas # Segundo task - Setear esquema a las tablas
start_transform = time.time()
etl_process.set_schema(etl_process) etl_process.set_schema(etl_process)
# Process - Insumo Gross (Ventas) # Process - Insumo Gross (Ventas)
...@@ -41,8 +51,10 @@ def run_etl(config: Dict[str, Any]) -> None: ...@@ -41,8 +51,10 @@ def run_etl(config: Dict[str, Any]) -> None:
# Process - Insumo Team (Equipos) # Process - Insumo Team (Equipos)
teams_flag = etl_process.process_teams.submit(etl_process, "TEAMS") teams_flag = etl_process.process_teams.submit(etl_process, "TEAMS")
logger.info(f"Duración de transformación y limpieza de datos: {time.time() - start_transform}")
# Write - Insumo GROSS # Write - Insumo GROSS
start_load = time.time()
etl_process.write.submit(etl_process, "VENTAS", ventas_flag) etl_process.write.submit(etl_process, "VENTAS", ventas_flag)
# Write - Insumo TEAMS # Write - Insumo TEAMS
etl_process.write.submit(etl_process, "TEAMS", teams_flag) etl_process.write.submit(etl_process, "TEAMS", teams_flag)
...@@ -50,8 +62,9 @@ def run_etl(config: Dict[str, Any]) -> None: ...@@ -50,8 +62,9 @@ def run_etl(config: Dict[str, Any]) -> None:
etl_process.write.submit(etl_process, "GOALS") etl_process.write.submit(etl_process, "GOALS")
# Write - Insumo PLANTA # Write - Insumo PLANTA
etl_process.write.submit(etl_process, "COMERCIAL_BASE") etl_process.write.submit(etl_process, "COMERCIAL_BASE")
logger.info(f"Duración de carga de datos a la BD: {time.time() - start_load}")
logger.info(f"Duración de ejecución del proceso ETL: {start_time - time.time()}") logger.info(f"Duración de ejecución del proceso ETL General: {time.time() - start_time}")
if __name__ == "__main__": if __name__ == "__main__":
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment